58 research outputs found

    The generality of management recommendations across populations of an invasive perennial herb

    Get PDF
    Demographic models are widely used to produce management recommendations for different species. For invasive plants, current management recommendations to control local population growth are often based on data from a limited number of populations per species, and the assumption of stable population structure (asymptotic dynamics). However, spatial variation in population dynamics and deviation from a stable structure may affect these recommendations, calling into question their generality across populations of an invasive species. Here, I focused on intraspecific variation in population dynamics and investigated management recommendations generated by demographic models across 37 populations of a short-lived, invasive perennial herb (Lupinus polyphyllus). Models that relied on the proportional perturbations of vital rates (asymptotic elasticities) indicated an essential role for plant survival in long-term population dynamics. The rank order of elasticities for different vital rates (survival, growth, retrogression, fecundity) varied little among the 37 study populations regardless of population status (increasing or declining asymptotically). Summed elasticities for fecundity increased, while summed elasticities for survival decreased with increasing long-term population growth rate. Transient dynamics differed from asymptotic dynamics, but were qualitatively similar among populations, that is, depending on the initial size structure, populations tended to either increase or decline in density more rapidly than predicted by asymptotic growth rate. These findings indicate that although populations are likely to exhibit transient dynamics, management recommendations based on asymptotic elasticities for vital rates might be to some extent generalised across established populations of a given short-lived invasive plant species

    Annual mowing has the potential to reduce the invasion of herbaceous Lupinus polyphyllus

    Get PDF
    In order to manage invasive plant species efficiently, it is necessary to have a thorough understanding of different strategies of population control, including the underlying mechanisms of action and the consequences for target populations. Here, I explored the effectiveness of biomass removal as a method of control for the invasive perennial herbLupinus polyphyllus. More specifically, using seed material from 11 populations, I assessed among-population variation (if any) in plant compensatory growth as a response to annual biomass removal under standardised growing conditions over two consecutive years, and quantified the demographic effects of a single biomass-removal event. In all study populations, annual biomass removal reduced plant size, flowering probability, and shoot and root biomass. Biomass removal also reduced plant survival and the number of flowering shoots, but these effects were pronounced at certain time points only. A population-level demographic analysis revealed that a single biomass-removal event considerably decreased the long-term population growth rate (lambda); this decline in lambda was due to a reduction in plant fecundity followed by survival and growth. These findings suggest that annual mowing has the potential to curb invasions ofL. polyphyllusbecause plants are not able to fully compensate for drastic biomass loss

    To breed or not to breed: drivers of intermittent breeding in a seabird under increasing predation risk and male bias

    Get PDF
    Intermittent breeding may be adaptive for long-lived species subjected to large accessory reproductive costs, but it may also reflect reduced adaptation to the environment, reducing population growth. Nevertheless, environmental influences on breeding propensity, particularly that of predation risk, remain poorly understood and difficult to study, because non-breeders are typically not identified. Female eiders Somateria mollissima from the Baltic Sea provide an excellent testbed, because nesting females have been exposed to intensifying predation and growing male bias that may increase female harassment. We based our study on long-term data (14 years) on females captured and marked at the nest, and females individually identified at sea irrespective of capture status. We hypothesized that breeding propensity decreases with increasing predation risk and male bias, and increases with breeder age. Consistent with our hypotheses, females nesting on islands with higher nest predation risk were more likely to skip breeding, and breeding probability increased with age. In contrast, the steep temporal decline in breeding propensity could not be reliably attributed to annual adult sex ratio or to the abundance of white-tailed sea eagles (Haliaeetus albicilla), the main predator on females, at the nearby Hanko Bird Observatory. Breeding probability showed significant consistent individual variation. Our results demonstrate that spatiotemporal variation in predation risk affects the decision to breed and high incidence of non-breeding was associated with low fledging success. The increased frequency of intermittent breeding in this declining population should be explicitly considered in demographic models, and emphasis placed on understanding the preconditions for successful reproduction.Peer reviewe

    Allelopathy by the invasive garden lupine inhibits the germination of native herbs

    Get PDF

    The invasive herb Lupinus polyphyllus can reduce plant species richness independently of local invasion age

    Get PDF
    The ecological impacts of invasive species may change or accumulate with time since local invasion, potentially inducing further changes in communities and the abiotic environment. Yet, time since invasion is rarely considered when investigating the ecological impacts of invasive non-native species. To examine the effect of time since invasion on the ecological impacts of Lupinus polyphyllus, a perennial nitrogen-fixing herb, we surveyed vascular plant communities in the presence and absence of L. polyphyllus in young, intermediate, and old semi-natural grassland sites (ca. 5, 10, 15 years representing both time since lupine invasion and plant community age). We analyzed vascular plant community composition, vascular plant species richness, and the cover of various ecological plant groups and L. polyphyllus. In contrast to our hypotheses, we found no change in the mean cover of L. polyphyllus (about 35%) with time since local invasion, and an ordination did not suggest marked changes in plant community composition. L. polyphyllus was associated with lower species richness in invaded plant communities but this effect did not change with time since invasion. Invaded plant communities were also associated with lower occurrence of generalist, oligotrophic (low-nutrient-adapted) and copiotrophic (nutrient-demanding) species but no temporal dynamics were detected. We conclude that even the intermediate cover of L. polyphyllus can reduce plant species richness, but the ecological impact caused by this invader might not dramatically change or accumulate with time since invasion.Peer reviewe

    Soil microbiota explain differences in herbivore resistance between native and invasive populations of a perennial herb

    Get PDF
    1. Soil microbiota can either slow down or facilitate plant invasions through their effects on plant performance. Associations with soil microbiota can also modify other plant traits such as herbivore resistance, which can indirectly affect the outcome of plant introductions.2. We studied the effects of soil microbiota on the perennial herbaceous legume Lupinus polyphyllus that hosts nitrogen-fixing mutualistic bacteria. We compared the plant performance, herbivore resistance and volatile organic compounds (VOCs) of plants from native (North American) and invasive (Finnish) populations of the species that were inoculated with intact or autoclaved soil from an invasive population.3. We found that plants of both origins greatly benefited from the intact soil inoculum with respect to all performance measures considered, suggesting that beneficial nitrogen-fixing rhizobia in the soil play a major role in shaping plant phenotypes. For three traits, effects of the intact soil inoculum were stronger in plants of native origin than in plants of invasive origin (number of leaves, herbivore resistance and total biomass). With the intact soil inoculum, plants of invasive origin were more resistant to snails than plants of native origin. Strikingly, differences in resistance to snails between plants of different origins disappeared entirely when soil microbes were reduced. Soil inoculum treatment altered the composition of the leaf VOC bouquet similarly regardless of plant origin.4. Synthesis. These results demonstrate the ability of Lupinus polyphyllus to associate with and benefit from putatively novel soil microbiota including rhizobia, which has likely contributed to its invasion success. Furthermore, it appears that the invasive populations have adapted to be less reliant on their symbionts, which further facilitates species spread. To our knowledge, this is the first study to demonstrate that differences in herbivore resistance between native and invasive plant populations of the same species can depend entirely on soil microbiota.</p

    Population responses to observed climate variability across multiple organismal groups

    Get PDF
    A major challenge in ecology is to understand how populations are affected by increased climate variability. Here, we assessed the effects of observed climate variability on different organismal groups (amphibians, insects, mammals, herbaceous plants and reptiles) by estimating the extent to which interannual variation in the annual population growth rates (CV lambda) and the absolute value of the long-term population growth rate (|log lambda|) were associated with short-term climate variability. We used empirical data (>= 20 consecutive years of annual abundances) from 59 wild populations in the Northern Hemisphere, and quantified variabilities in population growth rates and climatic conditions (temperature and precipitation in active and inactive seasons) calculated over four- and eight-year sliding time windows. We observed a positive relationship between the variability of growth rate (CV lambda) and the variability of temperature in the active season at the shorter timescale only. Moreover, |log lambda| was positively associated with the variability of precipitation in the inactive season at both timescales. Otherwise, the direction of the relationships between population dynamics and climate variability (if any) depended largely on the season and organismal group in question. Both CV lambda and |log lambda| correlated negatively with species' lifespan, indicating general differences in population dynamics between short-lived and long-lived species that were not related to climate variability. Our results suggest that although temporal variation in population growth rates and the magnitude of long-term population growth rates are partially associated with short-term interannual climate variability, demographic responses to climate fluctuations might still be population-specific rather than specific to given organismal groups, and driven by other factors than the observed climate variability

    Using statistics to design and estimate vital rates in matrix population models for a perennial herb

    Get PDF
    Matrix population models are widely used to assess population status and to inform management decisions. Despite existing theories for building such models, model construction is often partially based on expert opinion. So far, model structure has received relatively little attention, although it may affect estimates of population dynamics. Here, we assessed the consequences of two published matrix structures (a 4 × 4 matrix based on expert opinion and a 10 × 10 matrix based on statistical modeling) for estimates of vital rates and stochastic population dynamics of the long‐lived herb Astragalus scaphoides. We explored the ways in which choice of model structure alters the accuracy (i.e., mean) and precision (i.e., variance) of predicted population dynamics. We found that model structure had a negligible effect on the accuracy and precision of vital rates and stochastic stage distribution. However, the 10 × 10 matrix produced lower estimates of stochastic population growth rates than the 4 × 4 matrix, and more accurately predicted the observed trends in population abundance for three out of four study populations. Moreover, estimates of realized variation in population growth rate due to fluctuations in population stage structure over time were occasionally sensitive to matrix structure, suggesting differential roles of transient dynamics. Our study indicates that statistical modeling for choosing categories in matrix models might be preferable over expert opinion to accurately predict population trends and can provide a more objective way for model construction when the biological knowledge of the species is limited.</p

    Island properties dominate species traits in determining plant colonizations in an archipelago system

    Get PDF
    The extrinsic determinants hypothesis emphasizes the essential role of environmental heterogeneity in species' colonization. Consequently, high resident species diversity can increase community susceptibility to colonizations because good habitats may support more species that are functionally similar to colonizers. On the other hand, colonization success is also likely to depend on species traits. We tested the relative importance of environmental characteristics and species traits in determining colonization success using census data of 587 vascular plant species collected about 70 yr apart from 471 islands in the archipelago of SW Finland. More specifically, we explored potential new colonization as a function of island properties (e.g. location, area, habitat diversity, number of resident species per unit area), species traits (e.g. plant height, life-form, dispersal vector, Ellenberg indicator values, association with human impact), and species' historical distributions (number of inhabited islands, nearest occurrence). Island properties and species' historical distributions were more effective than plant traits in explaining colonization outcomes. Contrary to the extrinsic determinants hypothesis, colonization success was neither associated with resident species diversity nor habitat diversity per se, although colonization was lowest on sparsely vegetated islands. Our findings lead us to propose that while plant traits related to dispersal and establishment may enhance colonization, predictions of plant colonizations primarily require understanding of habitat properties and species' historical distributions

    Glyphosate residues in soil can modify plant resistance to herbivores through changes in leaf quality.

    Get PDF
    Glyphosate is the most widely used non-selective herbicide in the world. Glyphosate residues in soil can affect plant quality by modifying plant physiology, hormonal pathways and traits, with potential consequences for plants' interactions with herbivores. We explored these indirect effects in the context of plant-herbivore interactions in a perennial, nitrogen-fixing herb. We quantified leaf herbivory for glyphosate-exposed and control plants grown in phosphorus-fertilized and non-fertilized soils, and assessed the impacts of glyphosate treatment on traits related to plant resistance against herbivores (leaf trichome density, leaf mass per area) and performance (aboveground biomass, root:shoot ratio, nodule number, nodule activity). Moreover, we conducted a laboratory feeding experiment to compare the palatability of leaves from glyphosate-exposed and control plants to a generalist mollusc herbivore. Herbivore damage and intensity in situ increased during the growing season regardless of glyphosate or phosphorus treatment. Glyphosate treatment reduced leaf trichome density but had no effect on the other plant traits considered. Herbivore damage was negatively associated with leaf trichome density. The feeding experiment revealed no difference in the feeding probability of mollusc herbivores between glyphosate-exposed and control plants. However, there was an interaction between glyphosate treatment and initial leaf area for leaf consumption by herbivores: leaf consumption increased with increasing leaf area in both groups, but at a lower rate for glyphosate-exposed plants than for control plants. Our results show that glyphosate residues in soil have the potential to indirectly affect aboveground herbivores through changes in leaf quality, which may have mixed consequences for folivore damage.</p
    corecore